Tuesday, 23 June 2015

Elektrolizer Zacha Westa
Zach West z USA zrobił elektrolizer do motoru. 250Cc motor Zacha może być zasilany przez ten elektrolizer i Zach szacuje ze elektrolizer produkuje 17 litrów gazu HHO na minute, co wydaje mi się o wiele więcej niż normalnie przy takim zużyciu prądu. Te urządzenie nie jest COP>1 systemem (Tłumacz: gdzie pozyskana jest energia większa niż włożona) jako ze prąd z prądnicy motoru jest niewielki i co za tym idzie akumulator się powoli rozładuje z biegiem czasu. Jednakże Zacha projekt elektrolizera jest interesujący, pod względem prostoty i ilości produkowanego gazu. Projekt byłby niezwykle użyteczny gdyby został zaadoptowany do pracy na 12v, szczególnie w kombinacji z systemem Davida Quirey (Tłumacz: chodzi o system dostosowania mieszanki gazu do pracy z sinikami spalinowymi bez konieczności zmiany czasu zapłonu – przez przefiltrowanie przez substancje jak olej lniany aby nadać gazowi właściwości benzyny) który pozwala zmodyfikowanemu gazowi zasilać niezmodyfikowane silniki, jak przedstawiono dalej w tym rozdziale (Tłumacz: ta część nie jest częścią tego artykułu).

Metoda użyta przez Zacha wydaje się być niezwykła jako ze udaje się mu osunąć większość produkowanego tlenu. To oznacza ze pozostały gaz jest w głównie wodorem który to jest o wiele mniej wybuchowy niż HHO które to w tym stanie jest w doskonałej proporcji do ponownego uformowania wody i jest bardzo aktywne chemicznie. Zamiast tego powstający gaz może być bardzo dobrze skompresowany, i Zach kompresuje go do 30psi (funtów na cal kwadratowy) w zbiorniku. To pomaga w przyśpieszeniu ze stanu spoczynku na czerwonym świetle.

Zach użył prostego i modułowego stylu konstrukcji gdzie w serii, każda z nawiniętych parami elektrod jest ustawiona wewnątrz plastikowej rury. Ten rodzaj projektu nie jest ani trudny ani szczególnie drogi do wykonania. W uogólnieniu, elektrolizer Zacha jest zasilany wodą ze zbiornika aby utrzymywać wodę na stałym poziomie. Pojemnik elektrolizera zawiera kilka par elektrod które rozszczepiają wodę na wodór i tlen będąc zasilanym pulsującym prądem sterowanym przez układ elektroniczny zasilany przez prądnice motoru. Gaz wyprodukowany przez elektrolizer jest wpuszczony do filtra wodnego który to zabezpiecza przed przypadkowym zapaleniem się gazu w elektrolizerze (Tłumacz: chodzi o to ze czasami zawory sinika nie są szczelne bądź nie zamykają się poprawnie co prowadzi do zapalenia się doprowadzanego paliwa w gaźniku lub systemie zasilania paliwa), dodatkowo filter ten usuwa większość tlenu z gazu przez działanie jako separator gazowy.
Układ wygląda tak:

Wyprodukowany hydrogen (Tłumacz: wodór i tlen) nie jest bezpośrednio doprowadzony do silnika ale do zbiornika, gdzie to buduje się jego ciśnienie do 30psi, zanim silnik zostanie włączony. Większość tlenu wyprodukowanego w procesie elektrolizy jest wypuszczane przez zawór jednokierunkowy zawór ciśnieniowy który to został zainstalowany aby otrzymywać ciśnienie w filtrze wodnym (i elektrolizatorze) na poziomie 30psi. Ciśnienie to byłoby zbyt duże dla wysokiej wydajności elektrolizatora produkującego HHO które to jest niezwykle naładowane prądem i wybuchłoby spontanicznie gdy skompresowane, s powodu samo naładowania elektrycznego. W tym prostym elektrolizatorze prądu stałego, HHO gaz jest wymieszany z całkiem dużą ilością pary wodnej która to „rozpuszcza” HHO (Tłumacz: chodzi o zmianę właściwości wodorotlenku tak aby nie był naładowany elektrycznie) i pozwala na pewien poziom kompresji (Tłumacz: chodzi o bezpieczną kompresje która nie spowoduje samozapłonu jako ze ciągle jest to mieszanina naładowana elektrycznie – nie tak bardzo jak niezubożona mieszanka wodoru i tlenu).

System dostarczania wody operuje na hermetycznym zaworze w zbiorniku usytuowanym wyżej niż elektrolizer. Mała rurka plastikowa o średnicy 1/4 cala (6mm) odchodząca ze zbiornika dochodzi do elektrolizatora od góry w dół, kończąc się na poziomie płynu elektrolizy, który to poziom jest poziomem wymaganym w każdym z elektrolizatorów. Gdy elektroliza obniża poziom cieczy poniżej poziomu rurki doprowadzającej ciecz, to pozwala aby bulgoczący gaz przeszedł przez tą rurkę i aby poziom cieczy wyrównał się do pożądanego poziomu. To jest bardzo udany pasywny system niewymagający żadnych ruchomych elementów, ani tez elementów wymagających kontroli za pomocą elektroniki i prądu do kontroli poziomu cieczy – system ten jest bardzo udany i precyzyjnie kontrolujący poziom cieczy. Istotnym jest aby zrozumieć ze wymagane jest aby zbiornik wody był solidny tak ze nie będzie się wyginał oraz to ze wymagane jest aby korek/zakrętka zbiornika była szczelna aby wykluczyć sytuacje ze cała woda wpłynie do elektrolizatora (Tłumacz: chodzi o to aby woda w lelektrolizatorze była na stałym poziomie). Inną rzeczą do zapamiętania jest to aby uważać gdy się napełnia zbiornik z wodą bo zawiera on na powierzchni wody mieszaninę powietrza i wodorotlenku a nie tylko powietrze, o ciśnieniu 30psi.

Teraz, przedstawimy projekt z większymi szczegółami. Ten 6ścio woltowy elektrolizer zawiera osiem elektrod w parach. Te elektrody w parach są zwinięte jak rolada i umieszczone w rurze 50mm na 250mm. Elektrody są zrobione z płyty, klasy 316L stali nierdzewnej o wymiarach 10 cali (250mm) na 5 cali (125mm) która to jest łatwa do cięcia i obróbki. Płyty takowe są dostępne u dostawców stali jako cienka płyta metalowa.
Każda elektroda jest z uwagą dokładnie wyczyszczona nosząc gumowe rękawice, oszlifowana na krzyż papierem ściernym aby wytworzyć dyzą ilość mikroskopijnych „szczytów gór” na powierzchni metalu. To zwiększa powierzchnię roboczą i dostarcza powierzchnię gdzie bąbelki gazu mogą się oderwać od powierzchni metalu i unieść na powierzchnię płynu. Następnie elektrody są opłukane czystą wodą i zawinięte. Użyte są separatory dystansujące aby wytworzyć właściwą przestrzeń między płytową oraz nadać właściwy kształt. Następnie elektrody są wstawione do rury plastikowej tak jak pokazano tutaj:


Jako ze sprężystość metalu powoduje odginanie i prostowanie się płyt, separatory dystansujące są użyte. Aby utrzymać elektrody równomiernie odseparowane na całej długości – paski separatorów dystansujących o grubości 1/8 cala są użyte. Połączenia do płyt są zrobione przez wywiercenie dziury w rogu płyty i kilkakrotne nawinięcie drutu przez otwór – skręcenie tego drutu wokół siebie i zalutowanie go tak ze utworzone jest połączenie na obu stronach płyty – zalutowanie. Następnie lut ten jest zaizolowany silikonem albo innym odpowiednim izolatorem. Oczywiście jest to niezbędne aby lut nie stykał się z pozostałą elektrodą nawet jeśli pozostała elektroda jest bardzo blisko.


Jest to trudne aby zrobić dobre połączenie do płyt elektrody gdzie przestrzeń jest bardzo ograniczona. W tym przykładzie, kabel elektryczny jest zawinięty ściśle przez otwór wywiercony w płycie i następnie zalutowany i odizolowany. Lut jest wykonany tylko na kablu jako ze lut nie połączy się z płytą stalową.
Niezwykłością tego projektu jest to ze każda z elektrod jest w efekcie osobnym elektrolizatorem w samym sobie jako ze elektroda jest zamknięta na dole i górze oraz efektywnie fizycznie odizolowana od innych elektrod. Dopływ wody wchodzi przez górne pokrycie które to ma dziurę wywierconą aby powodować odpływ gazu. Druty elektryczne o rozmiarze 12 AWG albo 14 AWG są doprowadzone u podstawy i uszczelnione aby nie powodować upływ cieczy. Każda z komórek elektrolizy ma ciecz w sobie tak aby cała powierzchnia elektrody była w stanie generować gaz. Jest również przestrzeń aby utrzymać w sobie pryskanie i burzenie się płynu tak ze płyn nie ucieka z komórki. Każda komórka jest zamknięta standardową zakrętką/zakończeniem do rur dostępną u dostawcy rur plastikowych tak samo jak klej użyty do ich przyklejenia.


Osiem takich elektrod jest umieszczonych w prostym opakowaniu i połączone w pary jak pokazano tutaj: 



Pary zamkniętych w rurach spiralnych elektrod są następnie połączone w łańcuch wewnątrz jednostki elektrolizatora tak jak pokazano tutaj:



Monday, 22 June 2015

CHCIAŁBYM WTRONCIĆ BARDZO CIEKAWY PROJEKT KTÓRYTO JEST NA LIŚCIE PRJEKTÓW KTÓRE CHCE ZROBIĆ.
BARDZO DOBRZE UDOKUMENTOWANY ELEKTROLIZER NA 6V DO MOTOCYKLA  - ZAMIENIA MOTOR BENZYNOWY NA ELEKTRYCZNY (PALIWEM BESPOSREDNIM ZA KTORE PLACISZ JEST PRĄD - O WIELE TAŃSZY NIŻ BENZYNA)

OTO ARTYKOŁ PO ANGIELSKU - TŁUMACZENIE W TOKU.


Zach West's Electrolyser

Zach West of the USA has produced a motorcycle electrolyser. Zach’s 250 cc motorcycle can run on the output of his electrolyser and Zach estimates the output as being 17 litres per minute of HHO gas, which seems to me to be far too high for the current flow. This is not a COP>1 system as the output from the electrical system of the motorcycle is very limited, and so the battery will slowly run down as time goes by. However, Zach’s design of electrolyser is interesting, both for it’s simplicity and it’s high rate of gas output. The increased gas volume which would be produced if this design were adapted for, and driven by, a 12-volt input could be very useful, especially if combined with David Quirey’s system which allows the resulting modified gas to operate in unmodified engines, as shown later on in this chapter. 

The method which Zach uses is somewhat unusual as he manages to bleed off and discard most of the oxygen produced. This means that the remaining gas is mainly hydrogen which is far less explosive than HHO which is already in the perfect proportions for combination back into water and so is highly reactive. Instead, the resulting gas can be compressed reasonably well, and Zach compresses it to 30 psi (pounds per square inch) in a storage container. This helps with acceleration from stationary at traffic lights. 

Zach uses a simple, modular style of construction where a series of coiled electrode pairs are each placed inside an individual length of plastic pipe. This is a design which is neither difficult nor particularly expensive to build. In overall broad outline, Zach’s electrolyser is fed water from a water tank to keep it topped up. The electrolyser box contains several pairs of electrodes which split the water into hydrogen and oxygen when fed with pulsed electrical current generated by the electronics, which is powered by the electrical system of the motorcycle. The gas produced by the electrolyser is fed to a dual-purpose bubbler, which prevents any accidental igniting of the gases from travelling back to the electrolyser and in addition, removes most of the oxygen from the gas by acting as a gas “separator”. The arrangement is like this: 


The hydrogen gas output from the electrolyser is not fed directly to the engine but instead it goes to a pressure tank which is allowed to build up to thirty pounds per square inch before the engine is started. The majority of the oxygen produced by the electrolysis is vented away through a 30 psi one-way valve which is included to keep the pressure inside the bubbler (and the electrolyser) at the 30 psi level. That pressure is excessive for a high-performance electrolyser which produces HHO which is highly charged electrically and so will explode spontaneously when compressed, due to it’s own electrical charge. In this simple DC electrolyser, the HHO gas is mixed with quite an amount of water vapour which dilutes it and allows some compression. 

The water supply system operates by having an air-tight supply tank positioned at a higher level than the electrolyser. A small diameter (1/4” or 6 mm) plastic tube coming from the supply tank feeds through the top of the electrolyser and straight down, terminating at exactly the electrolyte surface level wanted in each of the electrolyser tubes. When the electrolysis lowers the electrolyte level below the bottom of the pipe, bubbles of gas pass up the tube allowing some water to flow from the tank to raise the electrolyte surface level back to it’s design position. This is a very neat passive system needing no moving parts, electrical supply or electronics but yet one which accurately controls the electrolyte level. One essential point to understand is that the water tank needs to be rigid so that it will not flex and the filler cap needs to be air-tight to prevent the entire water supply discharging into the electrolyser. Another point to remember when topping up the water tank is that the tank contains a mix of air and HHO gas above the water surface and not just plain air, and that gas mix is at 30 psi pressure. 

Now, to cover the design in more detail. This 6-volt electrolyser contains eight pairs of electrodes. These electrode pairs are coiled around in “Swiss-roll” style and inserted into a length of 2 inch (50 mm) diameter plastic pipe, ten inches (250 mm) tall. The electrodes are each made from a 10 inch (250 mm) by 5 inch (125 mm) of 316L-grade stainless steel shimstock which is easy to cut and work. Shimstock is available from a local steel supplier or metal fabrication company and is just a sheet of very thin metal. 

Each electrode is cleaned carefully, and wearing rubber gloves, cross-scored using coarse sandpaper in order to produce a very large number of microscopic mountain peaks on the surface of the metal. This increases the surface area and provides a surface which makes it easier for gas bubbles to break away and rise to the surface. The electrodes are rinsed off with clean water and then coiled round, using spacers to maintain the necessary inter-plate gap, to form the required shape which is then inserted into a length of plastic pipe as shown here: 


As the springy metal pushes outwards in an attempt to straighten up again, spacers are used to keep the electrodes evenly separated along their whole length by inserting 1/8” thick vertical spacer strips. The connections to the plates are made by drilling a hole in the corner of the plate and inserting the wire several times through the hole, twisting it back around itself and making a wire-to-wire solder joint on both sides of the steel. The joint is then insulated with silicone or any other suitable material. It is, of course, essential that the joint does not short-circuit to the other electrode even though that electrode is very close by. 


It is always difficult to make a good electrical connection to stainless steel plates if space is restricted as it is here. In this instance, the electrical wire is wrapped tightly through a drilled hole and then soldered and insulated. The soldering is only on the wire as solder will not attach to stainless steel. 

An unusual feature of this design is that each of the electrode pairs is effectively a separate electrolyser in its own right as it is capped top and bottom, and effectively physically isolated from the other electrodes. The water feed comes through the top cap which has a hole drilled in it to allow the gas to escape. The electrical wires (#12 AWG or swg 14) are fed through the base and sealed against leakage of electrolyte. Each of these units has some electrolyte stored above it, so there is no chance of any part of the electrode surface not being able to generate gas. There is also a large amount of freeboard to contain splashes and sloshing without any being able to escape from the container. The end caps are standard PVC caps available from the supplier of the PVC piping, as is the PVC glue used to seal them to the pipe. 

Eight of these electrodes are placed in a simple electrolyser case and connected together in pairs as shown here: 


Pairs of pipe-enclosed electrode spirals are then connected in a chain inside the electrolyser as shown here: 


Many years of experimentation and testing have shown that 316L-grade stainless steel is the most suitable material for electrodes, but surprisingly, stainless steel is not highly electrically conductive as you would expect. Each electrode causes a voltage drop of nearly half a volt, and so careful surface preparation, cleansing and conditioning are needed to get top performance from the electrodes. This process is described in detail by the very experienced Bob Boyce who says: 

The preparation of the plates is one of the most important steps in producing an electrolyser which works well. This is a long task, but it is vital that it is not skimped or hurried in any way. Surprisingly, brand new shiny stainless steel is not particularly suitable for use in an electrolyser and it needs to receive careful treatment and preparation before it will produce the expected level of gas output.

The first step is to treat both surfaces of every plate to encourage gas bubbles to break away from the surface of the plate. This could be done by grit blasting, but if that method is chosen, great care must be taken that the grit used does not contaminate the plates. Stainless steel is not cheap and if you get grit blasting wrong, then the plates will be useless as far as electrolysis is concerned. A safe method is to score the plate surface with coarse sandpaper. This is done in two different directions to produce a cross-hatch pattern. This produces microscopic sharp peaks and valleys on the surface of the plate and those sharp points and ridges are ideal for helping bubbles to form and break free of the plate.


When doing hand sanding the sandpaper is drawn across the plates in one direction only and not backwards and forwards, as the backwards stroke always destroys the perfectly good ridges created on the forward stroke. Also, you only need two strokes in one direction before turning the plate through ninety degrees and completing the sanding of that face of the plate with just two more strokes (again, with no backstroke).

Always wear rubber gloves when handling the plates to avoid getting finger marks on the plates. Wearing these gloves is very important as the plates must be kept as clean and as grease-free as possible, ready for the next stages of their preparation. Any particles created by the sanding process should now be washed off the plates. This can be done with clean tap water (not city water though, due to all the chlorine and other chemicals added), but only use distilled water for the final rinse.

While Potassium hydroxide (KOH) and Sodium hydroxide (NaOH) are the very best electrolytes, they need to be treated with care. The handling for each is the same:

Always store it in a sturdy air-tight container which is clearly labelled "DANGER! - Potassium Hydroxide". Keep the container in a safe place, where it can’t be reached by children, pets or people who won't take any notice of the label. If your supply of KOH is delivered in a strong plastic bag, then once you open the bag, you should transfer all its contents to sturdy, air-tight, plastic storage containers, which you can open and close without risking spilling the contents. Hardware stores sell large plastic buckets with air tight lids that can be used for this purpose.

When working with dry KOH flakes or granules, wear safety goggles, rubber gloves, a long sleeved shirt, socks and long trousers. Also, don’t wear your favourite clothes when handling KOH solution as it is not the best thing to get on clothes. It is also no harm to wear a face mask which covers your mouth and nose. If you are mixing solid KOH with water, always add the KOH to the water, and not the other way round, and use a plastic container for the mixing, preferably one which has double the capacity of the finished mixture. The mixing should be done in a well-ventilated area which is not draughty as air currents can blow the dry KOH around.

When mixing the electrolyte, never use warm water. The water should be cool because the chemical reaction between the water and the KOH generates a good deal of heat. If possible, place the mixing container in a larger container filled with cold water, as that will help to keep the temperature down, and if your mixture should “boil over” it will contain the spillage. Add only a small amount of KOH at a time, stirring continuously, and if you stop stirring for any reason, put the lids back on all containers.

If, in spite of all precautions, you get some KOH solution on your skin, wash it off with plenty of running cold water and apply some vinegar to the skin. Vinegar is acidic, and will help balance out the alkalinity of the KOH. You can use lemon juice if you don't have vinegar to hand - but it is always recommended to keep a bottle of vinegar handy.

Plate cleansing is always done with NaOH. Prepare a 5% to 10% (by weight) NaOH solution and let it cool down. A 5% solution ‘by weight’ is 50 grams of NaOH in 950 cc of water. A 10% solution ‘by weight’ is 100 grams of NaOH in 900 cc of water. As mentioned before, never handle the plates with your bare hands, but always use clean rubber gloves.

A voltage is now applied across the whole set of plates by attaching the leads to the outermost two plates. This voltage should be at least 2 volts per cell, but it should not exceed 2.5 volts per cell. Maintain this voltage across the set of plates for several hours at a time. The current is likely to be 4 amps or more. As this process continues, the boiling action will loosen particles from the pores and surfaces of the metal. This process produces HHO gas, so it is very important that the gas is not allowed to collect anywhere indoors (such as on ceilings).

After several hours, disconnect the electrical supply and pour the electrolyte solution into a container. Rinse out the cells thoroughly with distilled water. Filter the dilute NaOH solution through paper towels or coffee filters to remove the particles. Pour the dilute solution back into the cells and repeat this cleaning process. You may have to repeat the electrolysis and rinsing process many times before the plates stop putting out particles into the solution. If you wish, you can use a new NaOH solution each time you cleanse, but please understand that you can go through a lot of solution just in this cleaning stage if you choose to do it that way. When cleansing is finished (typically 3 days of cleansing), do a final rinse with clean distilled water. It is very important that during cleansing, during conditioning and during use, that the polarity of the electrical power is always the same. In other words, don’t swap the battery connections over as that destroys all the preparation work and requires the cleansing and conditioning processes to be carried out all over again.

Using the same concentration of solution as in cleansing, fill the cells with dilute solution. Apply about 2 volts per cell and allow the unit to run. Remember that very good ventilation is essential during this process. As water is consumed, the levels will drop. Once the cells stabilise, monitor the current draw. If the current draw is fairly stable, continue with this conditioning phase continuously for two to three days, adding just enough distilled water to replace what is consumed. If the solution changes colour or develops a layer of crud on the surface of the electrolyte, then the electrodes need more cleansing stages. After two to three days of run time, pour out the dilute KOH solution and rinse out the cells thoroughly with distilled water. 


The construction which Zach has used is very sensible, utilising readily available, low-cost PVC piping. The spiral electrodes are inside 2” diameter pipe and Zach says that the bubbler is also 2” diameter PVC pipe. I seriously doubt that a two-inch diameter bubbler could handle a flow as high as 17 lpm which is a substantial amount. Also. You want the bubbles in the bubbler to be small in order that the gas comes into good contact with the water. Consequently, using more than one bubbler where the diagram shows just one, would be sensible. 

At this time, Zach only uses one bubbler, but a second one is highly desirable, located between the storage tank and the engine and positioned as close to the engine as possible. This extra bubbler does two things, most importantly, it prevents the gas in the storage tank being ignited by a backfire caused by a valve sticking slightly open and secondly, it removes every last trace of potassium hydroxide fumes from the gas, protecting the life of the engine. This is a big gain for such a simple addition. 

The gas storage tank is also made from PVC pipe, this time, 4 inch (100 mm) diameter, 14 inches (350 mm) long with standard end caps fixed in place with PVC glue as shown below. This is a compact and effective arrangement well suited for use on a motorcycle. The majority of this extra equipment can be mounted in bike panniers, which is a neat arrangement. 


The electric drive to the electrolyser is from a Pulse Width Modulator (“DC Motor speed controller”) which was bought from the Hydrogen Garage as Zach is in America. That particular PWM board is no longer available, so especially for those people in Europe the choice might be rmcybernetics.com, although there are many suppliers and the module should not be expensive. 


As this unit was rated at just 15 Amps maximum, Zach added another 15 Amp rated FET transistor in parallel to the output stage to raise the current capacity to 30 Amps. A fuse protects against accidental short circuits and a relay is used to control when the electrolyser is to be producing gas. The connecting wire is #12 AWG (swg 14) which has a maximum continuous current capacity of just under ten amps, so although the current peaks may be twenty amps, the average current is much lower than that. 

Two electromagnets outside the bubbler, positioned 2.5 inches (65 mm) above the base, are connected as part of the electrical supply to the electrolyser, and these cause most of the oxygen and hydrogen bubbles to separate and exit the bubbler through different pipes. There is a divider across the bubbler to assist in keeping the gases from mixing again above the water surface. The bubbler also washes most of the potassium hydroxide fumes out of the gas as the bubbles rise to the surface, protecting the engine as these fumes have a very destructive effect on engines. 

The objective with any hydroxy system is to have the minimum amount of gas between the bubbler and the engine in order to block the ignition of the gas in the unlikely event of a backfire. In this system, the gas storage tank contains a very large amount of gas, though admittedly it is not full HHO gas thanks to the electromagnet separation system, but nevertheless, it would be most advisable to have a second bubbler between the gas storage tank and the engine, positioned as close to the engine as possible. HHO gas produces a very high-speed shock-wave when it is ignited so the bubbler needs to be of strong construction to withstand this. No pop-off bubbler cap or blow-out device acts fast enough to contain a HHO shock-wave, so make the bubbler housing strong enough to withstand the pressure wave. 

Zach’s electrolyser arrangement is like this: 


It must be realised that the water tank, electrolyser, bubbler/separator and hydrogen holding tank, all operate at thirty pounds per square inch. This means that each of these containers must be robust enough to withstand that pressure quite easily. It also means that the 30 psi one-way check valve on the oxygen venting pipe is an essential part of the design as well as being a safety feature. As a bubble of gas from the electrolyser escapes into the water tank every time a drop of water feeds to the electrolyser, the contents of the water tank above the water surface becomes a stronger and stronger mix of air and HHO. Consequently, it soon becomes an explosive mixture. It is common for static electricity to build up on a tank of this nature, so it will be very important to earth both the tank and it’s cap before removing the cap to top up the tank with more water. 

The electrolyser has a potassium hydroxide (KOH) solution in it. The electrolysis process produces a mixture of hydrogen, oxygen, dissolved gases (air) and potassium hydroxide fumes. When the system is being used, the water in the bubbler washes out most of the potassium hydroxide fumes, and in doing so, it gradually becomes a dilute electrolyte itself. Potassium hydroxide is a true catalyst and while it promotes the electrolysis process, it does not get used up during electrolysis. The only loss is to the bubbler. Standard practice is to pour the contents of the bubbler into the electrolyser from time to time, filling the bubbler again with fresh water. Potassium hydroxide has been found to be the most effective catalyst for electrolysis but it has a very bad effect on the engine if it is allowed to enter it. The first bubbler is very effective in removing the potassium hydroxide fumes, but many people prefer to take the scrubbing process a step further by placing a second bubbler in the line, in this instance, between the hydrogen pressure tank and the engine. With two bubblers, absolutely no potassium hydroxide fumes reach the engine. 

When running with HHO gas as the only fuel, it is essential to adjust the timing of the spark so that it occurs after Top Dead Centre. The timing on this bike is now set at 8 degrees after TDC. However, if David Quirey’s style of bubbling the HHO through a liquid such as acetone, then no timing alterations would be needed. 

This electrolyser is designed to run off the nominal six volts of a motorcycle electrics (about 7.3 volts with the engine running), but increasing the number of tubes, each containing electrode coils, would convert the design to a 12V system and then the electrolyser housing would probably be like this: 


It is possible that seven sets of three or four spirals wired in parallel would be used for larger engines with their 13.8 volt electric systems. Zach uses the very simple method of allowing excess gas to be vented via the oxygen valve if gas production exceeds the requirements of the engine. When operating on a twelve volt system it might be more convenient to use a standard pressure switch which opens an electrical connection when the gas pressure rises above the value for that switch: 


The pressure switch just mounts on one of the end caps of the pressure tank and the switch electrical connection is placed between the relay and the electrolyser. If the gas pressure reaches it’s maximum value of 30 psi. then the switch opens, stopping electrolysis until the pressure drops again: 


Caution: This electrolyser is not a toy. If you make and use one of these, you do so entirely at your own risk. Neither the designer of the electrolyser, the author of this document or the provider of the internet display are in any way liable should you suffer any loss or damage through your own actions. While it is believed to be entirely safe to make and use an electrolyser of this design, provided that the safety instructions shown below are followed, it is stressed that the responsibility is yours and yours alone. 

An electrolyser should not be considered as an isolated device. You need to remember that both electrical and gas safety devices are an essential part of any such installation. The electrical safety devices are a circuit-breaker (as used by any electrician when wiring a house) to protect against accidental short-circuits, and a relay to make sure that the booster does not operate when the engine is not running: 



Tuesday, 16 June 2015

To gdzie ta magia !?



The diagram above, illustrates the difference between the Magnetic field generated around a conductor fed with a pulse of Direct Current and the Radiant Energy waves created by that pulse.   If a sharp current pulse is driven down a vertical wire, it causes two different types of field.   The first field is magnetic, where the lines of magnetic force rotate around the wire.   These lines are horizontal, and rotate clockwise when viewed from above.   The magnetic field remains as long as the current flows down the wire. 

Rysunek na górze ilustruje różnice pomiędzy Polem Magnetycznym wygenerowanym wokół przewodnika wystawionego na puls Prądu Stałego oraz fale Energi Radiantu (Tłumacz: chodzi o coś co generowane jest od środka i rozchodzi się prostopadle na zewnątrz) wykreowane przez impuls. Jeśli ostry puls prądu zostaje skierowany przez prosty drut – spowoduje to powstanie dwóch pól. Pierwszym polem będzie pole magnetyczne, gdzie linie sił pola magnetycznego tworzą się w formie okręgów wokół drutu. Te linie są liniami horyzontalnymi, i obracają się zgodnie z ruchem wskazówek zegara gdy patrzy się na nie z góry. Pole magnetyczne będzie się utrzymywać tak długo jak prąd płynie przez drut.

The second field is the Radiant Energy wave. This wave will only occur if the current pulse is in one direction, i.e. it will not occur if the wire is fed with alternating current.   The wave radiates out horizontally from the vertical wire in every direction in the form of a shock wave.   It is a one-off event and does not repeat if the current in the wire is maintained.   The Radiant Energy briefly unbalances the zero-point energy field and that causes an energy flow as the field moves back into equilibrium again.   A tiny fraction of this massive, brief energy flow can be picked up and that collected energy is more than 100 times greater than the energy needed to generate the spark which triggered the energy flow in the first place.   This is the energy which the tube was designed to collect.   Consequently, the tubes are fed with a train of high-intensity, short-duration, DC pulses to generate repeated waves of Radiant Energy.   It is the pick-up of the resulting excess energy which allows the motors run without the need for the batteries to be charged by any conventional source of current. 

Drugie pole to pole fala Energi Radiantu. Ta fala pojawia się tylko gdy impuls prądu jest w jednym kierunku – niepowstanie gdy przez drut przepłynie prąd zmienny. Fala jest wypromieniowana horyzontalnie z pionowego drutu w każdym kierunku tak jak siła uderzeniowa. Jest to jedno trwałe zjawisko i nie powtarza się gdy prąd w drucie jest utrzymywany. Energia Radiantu krótkotrwale zaburza pole tzw. energii punktu zerowego i to powoduje przepływ energii w czasie gdy pole to powraca do stanu równowagi. Maleńka cząstka krótkotrwałego przepływu tej ogromnej energii może zostać pobrana, gdzie pobrana energia jest 100 razy większa niż energia potrzebna aby wygenerować impuls który zapoczątkował przepływ energii. To jest energia dla pobrania której cewka jest skonstruowana. Cewka jest potraktowana powtarzającymi się impulsami silnego prądu – pulsami prądu stałego aby generować fale Energi Radiantu. Ten pobór energii której jest więcej niż energii włożonej pozwala silnikom pracować bez potrzeby doprowadzania prądu z baterii załadowanych konwencjonalną energią.

The Radiant energy wave is not restricted to a single plane as shown in the diagram above, which is intended to indicate the difference between the electromagnetic field circling around the wire, and the Radiant Energy field which radiates away from the wire.   Both of these fields occur at all points along the full length of the wire as shown here: 

Energia Radiantu nie jest ograniczona do pojedynczej płaszczyzny tak jak przedstawione na powyższym rysunku, który to ma na celu wskazać różnice pomiędzy polem magnetycznym tworzącym kręgi wokół drutu, a polem Energii Radiantu które to promieniuje na zewnątrz od środka drutu. Te obydwa pola pojawiają się we wszystkich miejscach drutu tak jak pokazano na tym rysunku:


Radiant Energy, when converted to electrical power, produces a different kind of electrical power to that produced by batteries and by the mains supply.   Power a motor with conventional electricity and it gets hot under load.   Power the same motor by Radiant Energy electricity and under load the motor gets cold.   Really overload it by stalling it and the motor housing is likely to be covered with frost.   That is why this form of electricity is referred to as “cold” electricity. 

Energia Radiantu, gdy skonwertowana na energie elektryczną – produkuje odmienny rodzaj energii elektrycznej w stosunku do tej produkowanej przez baterie i tej pobieranej z sieci energetycznej. Jeśli zasilisz silnik konwencjonalną energią elektryczną to wtedy silnik pod obciążeniem się nagrzeje. Zasil ten sam silnik prądem wygenerowanym przez Energie Radiantu to wtedy silnik pod obciążeniem się ochłodzi. Obciąż silnik znacznie przez zatrzymanie wirnika to wtedy obudowa silnika prawdopodobnie pokryje się szronem. I to dlatego ten rodzaj elektryczności nazywany jest „zimnym prądem”.


(Tłumacz: ten artykuł jest częścią jednego z projektów wolnej energii – mianowicie samo zasilającego się silnika elektrycznego – przytoczyłem go aby wytłumaczyć zjawisko. Wkrótce dodam artykuł z doświadczeń Tesli pokazującej to zjawisko. )    

Monday, 15 June 2015

TO GDZIE TA MAGIA !?

(tlumaczenie wkrotce)

The Ed Gray Power System 
  The power tube presented to the public by Edwin Gray snr. operates by generating a series of very short, very sharp pulses using a spark gap. This device is reputed to have a power output which is one hundred times that of the power input. Ed Gray and his electric pulse motor are very famous, but as far as I am aware, nobody has successfully replicated this claimed performance. Further, an in-depth examination of the background details by Mr Mark McKay have turned up a number of facts which present a very different picture, and while it is perfectly correct to say that spark-gap pulses generate a good waveform for shocking the local zero-point energy field into the sort of imbalance which can provide a massive power inflow into a device or circuit, we need to be careful to get the full facts in this case.

Image
 First, let us put the whole thing in its proper perspective. In May 1973, Cal-Tech in the US performed an independent assessment of an engine provided to them by Edwin Gray. They measured the input and the output and certified that the output power was 275 greater than the input power. This demonstrates clearly that excess power can be drawn into an engine and provide a performance which can power both the engine as well as doing additional useful work.   Having said that, it needs to be made clear that Edwin Gray did not build that small motor, did not understand how it worked, nor did he ever disclose the design in any of the patents which he obtained afterwards. We need to follow the sequence of events and notice when each thing happened. The history is as follows:   In 1957, a Russian immigrant to the USA, one Alexei Poppoff, showed Edwin Gray a circuit which he said that he had been shown by Nikola Tesla. Edwin Gray did not understand the circuit and had no idea how to create anything useful based on it. He then joined up with his next-door neighbour Marvin Cole, who held a Masters degree in Mechanical Engineering and who, unlike Gray, was able to understand the circuitry.   In 1958, Ed Gray left the Los Angles area in a hurry.   From 1958 to 1972 Marvin Cole, working alone, designed and built ever more powerful prototype engines, and it was a small one of these which was tested by Cal-Tech.   In this period, Marvin also developed ever more powerful power supplies, which are the really important item in all of this.   In 1967, Ed Gray rejoins Marvin Cole and together from 1967 to 1972, they solicited venture capital and promoted the technology.   Early in 1972, Marvin Cole disappeared and never saw Gray again. It is not clear if he was intimidated, died, or just did not want to be involved in all the publicity and effort needed to turn the prototype engines into a commercial product. No matter what the reason, the result was that Edwin Gray was suddenly disconnected from the brains behind the project, and that left him in a very difficult position. He didn't want to let go of the dream of becoming rich through this spectacular development, and so he tried to continue the development on his own.   As already mentioned, in May of the following year (1973), Gray had a small Marvin Cole motor independently third-party tested at the famous Cal-Tech laboratory in Los Angles, where a measured input of just 27 watts produced a measured output of 10 horsepower (7460 watts). The objective was to provide solid evidence of a new technology which was capable of changing the world and so would attract investors. To further boost his image and convince potential investors, in that same year of 1973, Edwin staged demonstrations which jumped electromagnets up into the air, showing the strength of the power which drove the Marvin Cole engines.   It is very important to understand that all of Edwin Gray's patents were applied for after the departure of Marvin Cole. These do not disclose the technology tested by Cal-Tech and it must be understood that Edwin was very much afraid of revealing anything important in any of the patents in case some other person would understand the things which were a mystery to him and snatch away the prize of commercial success. Try watching Peter Lindemann’s informative video here for considerable additional information.     Marvin Cole's power system produced "cold electricity" which could power lights and other devices. It was frequently demonstrated that the output was not conventional electricity and powered light bulbs which were placed under water and at the same time, it was quite safe for a hand to be put into that same water along with the lit bulb. The glass of the conventional bulbs used in these demonstrations would have shattered when placed under water if they had been powered by conventional "hot electricity" as the sudden change in temperature would have broken the glass. Powered as they were by "cold electricity", they ran cool and so there was no stress on the glass when submerged in water.   Peter Lindemann points out that Ed Gray’s power conversion tube circuit is effectively a copy of Nikola Tesla’s circuit for doing the same thing:    
Image
 This was disclosed by Tesla in his ‘Philadelphia and St Louis’ lecture in 1893 and shows how loads can be powered when a high voltage source is pulsed by a magnetically-quenched sparks - this creates DC pulses of very short duration.    
Image
 The diagram above, illustrates the difference between the Magnetic field generated around a conductor fed with a pulse of Direct Current and the Radiant Energy waves created by that pulse.   If a sharp current pulse is driven down a vertical wire, it causes two different types of field.   The first field is magnetic, where the lines of magnetic force rotate around the wire.   These lines are horizontal, and rotate clockwise when viewed from above.   The magnetic field remains as long as the current flows down the wire.   The second field is the Radiant Energy wave. This wave will only occur if the current pulse is in one direction, i.e. it will not occur if the wire is fed with alternating current.   The wave radiates out horizontally from the vertical wire in every direction in the form of a shock wave.   It is a one-off event and does not repeat if the current in the wire is maintained.   The Radiant Energy briefly unbalances the zero-point energy field and that causes an energy flow as the field moves back into equilibrium again.   A tiny fraction of this massive, brief energy flow can be picked up and that collected energy is more than 100 times greater than the energy needed to generate the spark which triggered the energy flow in the first place.   This is the energy which the tube was designed to collect.   Consequently, the tubes are fed with a train of high-intensity, short-duration, DC pulses to generate repeated waves of Radiant Energy.   It is the pick-up of the resulting excess energy which allows the motors run without the need for the batteries to be charged by any conventional source of current.   The Radiant energy wave is not restricted to a single plane as shown in the diagram above, which is intended to indicate the difference between the electromagnetic field circling around the wire, and the Radiant Energy field which radiates away from the wire.   Both of these fields occur at all points along the full length of the wire as shown here:   
Image
 Radiant Energy, when converted to electrical power, produces a different kind of electrical power to that produced by batteries and by the mains supply.   Power a motor with conventional electricity and it gets hot under load.   Power the same motor by Radiant Energy electricity and under load the motor gets cold.   Really overload it by stalling it and the motor housing is likely to be covered with frost.   That is why this form of electricity is referred to as “cold” electricity.   In his book “Cold War Secrets - HAARP and Beyond”, Gerry Vassilatos quotes research work done in this area by Tesla and others: